资源类型

期刊论文 125

会议视频 2

年份

2023 7

2022 15

2021 3

2020 2

2019 15

2018 4

2017 6

2016 6

2015 2

2014 3

2013 3

2012 4

2011 5

2010 7

2009 11

2008 8

2007 13

2006 1

2004 1

2003 1

展开 ︾

关键词

信息技术 2

内燃机 2

柴油 2

柴油机 2

汽油 2

FCC汽油 1

RIDOS 1

YAG激光淬火 1

三端单片开关电源 1

举国体制模式 1

乘用车 1

乙醇 1

二冲程发动机 1

传播动力学模型 1

催化改质 1

催化裂解 1

全局优化 1

全生命周期管理 1

关键核心技术 1

展开 ︾

检索范围:

排序: 展示方式:

Impact of gasoline engine deposits on light duty vehicle emissions: in-use case study in Beijing, China

Xin YUE, Ye WU, Xianjiang HUANG, Yao MA, Yuan PANG, Xiaofeng BAO, Jiming HAO

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 717-724 doi: 10.1007/s11783-012-0438-3

摘要: Tailpipe emissions from light-duty gasoline vehicles usually deteriorate over time. The accumulation of engine deposits due to inadequate gasoline detergency is considered to be one of the major causes of such emission deterioration. Six in-use light-duty gasoline vehicles in Beijing were tested to investigate the impact of engine deposits on emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NO ). Emissions under cold start and hot running test conditions from the six light duty vehicles were measured before and after engine deposits were removed. Results show that although individual vehicles reacted differently for each of the pollutants, elimination of engine deposits on average reduced HC emissions under hot running conditions by 29.4%, CO emissions under cold start conditions by 23.0% and CO emissions under hot running conditions by 35.5% ( <0.05 in all cases). No pollutant emissions increased with statistical significance ( <0.05) after the removal of engine deposits. Variations of emission changes upon removal of engine deposits were observed. Such variations are in line with previous studies, implying that the impact patterns of engine deposits on vehicle emissions may be subject to many influencing factors that are not fully understood and difficult to control under all conditions. A statistical view of the impact of engine deposits on vehicle emissions may be appropriate for evaluation of emissions reductions across a city or a country. It is necessary to maintain sufficient and effective gasoline fuel detergency in practice to keep the engines clean and in turn reduce vehicle emissions.

关键词: engine deposit     fuel quality     detergency     vehicle emission    

汽油机燃用轻油基燃料的缸内过程参数分析

孙玲玲

《中国工程科学》 2000年 第2卷 第12期   页码 78-83

摘要:

介绍作者开发的一种汽油机用新型燃料,为检验其品质,对发动机缸内过程参数进行了全面测试分析。结果表明:汽油机燃用轻油基混合燃料时无爆震,动力性稍低于燃用汽油,缸内过程参数标准偏差明显低于燃用汽油。这充分说明,所开发的轻油基混合燃料品质优良,适于汽油机使用。

关键词: 轻油     汽油机     缸内过程参数     抗爆性    

Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start

SONG Ruizhi, LIU Shenghua, LIANG Xiaoqiang, Tiegang H U

《能源前沿(英文)》 2008年 第2卷 第4期   页码 395-400 doi: 10.1007/s11708-008-0081-7

摘要: A 3-cylinder port fuel injection (PFI) engine fueled with methanol-gasoline blends was used to study combustion and emission characteristics. Cylinder pressure analysis indicates that engine combustion is improved when methanol is added to gasoline. With the increase of methanol, the flame developing period and the rapid combustion period are shortened, and the indicated mean effective pressure increases during the first 50 cycles. Meanwhile, a novel quasi-instantaneous sampling system was designed to measure engine emissions during cold start and warm-up. The results at 5°C show that unburned hydrocarbon (UHC) and carbon monoxide (CO) decrease remarkably. Hydrocarbon (HC) reduces by 40% and CO by 70% when fueled with M30 (30% methanol in volume). The exhaust gas temperature is about 140°C higher at 200 s after operation compared with that of gasoline.

关键词: combustion     3-cylinder     indicated     Cylinder pressure     emission    

Experimental study of stratified lean burn characteristics on a dual injection gasoline engine

Chun XIA, Tingyu ZHAO, Junhua FANG, Lei ZHU, Zhen HUANG

《能源前沿(英文)》 2022年 第16卷 第6期   页码 900-915 doi: 10.1007/s11708-021-0812-6

摘要: Due to increasingly stringent fuel consumption and emission regulation, improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine. Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines, although the burning rate is decreased by higher diluted intake air. In this study, dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug. The effects of engine control parameters such as the excess air coefficient (Lambda), direct injection (DI) ratio, spark interval with DI, and DI timing on combustion, fuel consumption, gaseous emissions, and particulate emissions of a dual injection gasoline engine are studied. It is shown that the lean burn limit can be extended to Lambda= 1.8 with a low compression ratio of 10, while the fuel consumption can be obviously improved at Lambda= 1.4. There exists a spark window for dual injection stratified lean burn mode, in which the spark timing has a weak effect on combustion. With optimization of the control parameters, the brake specific fuel consumption (BSFC) decreases 9.05% more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure (BMEP) at a 2000 r/min engine speed. The NOx emissions before three-way catalyst (TWC) are 71.31% lower than that of the original engine while the particle number (PN) is 81.45% lower than the original engine. The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions. The BSFC reduction rate is higher than 5% and the PN reduction rate is more than 50% with the speed lower than 2400 r/min and the load lower than 5 bar.

关键词: dual injection     stratified lean burn     gasoline engine     particulate matter emission     combustion analysis    

Control of homogeneous charge compression ignition combustion in a two-cylinder gasoline direct injectionengine with negative valve overlap

WANG Zhi, WANG Jianxin, SHUAI Shijin, MA Qingjun, TIAN Guohong

《能源前沿(英文)》 2007年 第1卷 第3期   页码 311-315 doi: 10.1007/s11708-007-0045-3

摘要: Homogeneous charge compression ignition (HCCI) has challenges in ignition timing control, combustion rate control, and operating range extension. In this paper, HCCI combustion was studied in a two-cylinder gasoline direct injection (GDI) engine with negative valve overlap (NVO). A two-stage gasoline direct injection strategy combined with negative valve overlap was used to control mixture formation and combustion. The gasoline engine could be operated in HCCI combustion mode at a speed range of 800–2 200 r/min and load, indicated mean effective pressure (IMEP) range of 0.1–0.53 MPa. The engine fuel consumption is below 240 g/(kW

关键词: Homogeneous     control     combustion     consumption     extension    

一种高效的二冲程发动机概念——结合空气混合动力系统的增压 直流扫气式直喷汽油(BUSDIG)发动机 Review

王新颜, 赵华

《工程(英文)》 2019年 第5卷 第3期   页码 535-547 doi: 10.1016/j.eng.2019.03.008

摘要:

本研究提出并设计了一种新颖的二冲程增压直流扫气式直喷汽油(BUSDIG)发动机,以实现发动机小型化和低速化,进而提升发动机的性能和效率。本文综述了BUSDIG 发动机的设计和开发过程,并总结了主要的研究成果。为了最大限度地提高发动机的扫气性能,并实现合理的缸内流动以促进燃油/ 空气的混合过程,本研究采用三维(3D)计算流体动力学(CFD)模拟手段系统分析了发动机缸径/ 冲程比(B/S)、扫气道角度和进气道的设计。此外,本研究还系统分析了扫气口和排气门开启型线对扫气过程的影响。为实现最佳的缸内燃油分层,采用经过实验标定的Reize-Diwakar模型开展了缸内喷雾的CFD 模拟,系统分析了不同喷油策略对缸内混合气形成过程的影响。基于优化后的BUSDIG 发动机设计方案,在Ricardo WAVE 软件中构建了对应的一维(1D)发动机计算模型。计算结果表明,采用稀薄燃烧和喷水策略,二冲程BUSDIG发动机的最高有效热效率可达47.2%。在化学计量燃空当量比条件下,BUSDIG 发动机在1600 r∙min–1 的转速下可实现379 N∙m 的扭矩,在4000 r∙min–1 的转速下可达到112 kW∙L–1 的功率密度。

关键词: 二冲程发动机     直流扫气     发动机设计     发动机模拟     扫气性能     热效率    

“高效两冲程发动机概念的更正:具有空气混合动力功能的增压单流扫气直喷汽油(BUSDIG)发动机” [工程5(2019)535–547]

Xinyan Wang, Hua Zhao

《工程(英文)》 2019年 第5卷 第5期   页码 979-979 doi: 10.1016/j.eng.2019.08.004

Selective catalytic reduction of NOx from exhaust of lean-burn engine over Ag-Al2O3/cordierite catalyst

LI Junhua, KANG Shoufang, FU Lixin, HAO Jiming

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 143-146 doi: 10.1007/s11783-007-0025-1

摘要: A highly effective Ag-AlO catalyst was prepared using the sol-gel method, and characterized by surface area using nitrogen adsorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The catalyst performance was tested on a real lean-burn gasoline engine. Only unburned hydrocarbons and carbon monoxide in the exhaust were directly used as reductant (without any external reductant), the maximum NO conversion could only reach 40% at 450?C. When an external reductant, ethanol was added, the average NO conversion was greater than 60%. At exhaust gas temperature range of 350 500?C, the maximum NO conversion reached about 90%. CO and HC could be efficiently oxidized with Pt-AO oxidation catalyst placed at the end of SCR converter. However, NO conversion drastically decreased because of the oxidation of some intermediates to NO again. The possible reaction mechanism was proposed as two typical processes, nitration, and reduction in HC-SCR over Ag-AlO.

关键词: lean-burn gasoline     external reductant     nitrogen adsorption     conversion     catalyst performance    

燃料/发动机系统的发展——实现可持续运输的途径 Review

Gautam Kalghatgi

《工程(英文)》 2019年 第5卷 第3期   页码 510-518 doi: 10.1016/j.eng.2019.01.009

摘要:

全球对运输能源的需求巨大且不断增长,主要由在内燃机(ICE)中燃烧的石油衍生液体燃料来满足。此外,未来对航空燃油和柴油需求的增长速度预计将快于对汽油的需求,可能会使低辛烷值汽油更容易获得。许多重大措施力争发展电池电动汽车(BEV)和燃料电池作为内燃机汽车的替代品,并寻求如生物燃料和天然气等燃料作为传统液体燃料的替代燃料。然而,这些替代方案中的研究基础都非常薄弱,并且还要克服重大障碍从而快速自由地发展。因此,在未来几十年内,运输(特别是商业运输)将继续主要由燃用石油基液体燃料的内燃机提供动力。因此,只有通过改进内燃机才能确保交通运输的可承受性、能源安全,控制对温室气体(GHG)排放和空气质量的影响。实际上,内燃机在使用目前市场上燃料的同时,通过改进燃烧系统、控制系统和后处理系统,以及在部分电气化混动辅助下将进一步得到改进。然而,通过改进燃料/ 发动机系统,内燃机依旧还有很多发展空间,可以使我们更多地利用制造燃料过程中的收益并使用易于获得的部件。如汽油压燃(GCI),可在压缩点火发动机中使用低辛烷值汽油,使汽油受压缩着火。与现代柴油发动机相比,GCI可以实现接近柴油机的效率,且在成本更低的情况下较易控制氮氧化物(NOx)和颗粒物的排放。按需辛烷值(OOD)还有助于优化燃料的抗爆性能,从而提高系统的整体效率。

关键词: 运输能源     内燃机     汽油     柴油    

Active fuel design—A way to manage the right fuel for HCCI engines

Zhen HUANG,Zhongzhao LI,Jianyong ZHANG,Xingcai LU,Junhua FANG,Dong HAN

《能源前沿(英文)》 2016年 第10卷 第1期   页码 14-28 doi: 10.1007/s11708-016-0399-5

摘要: Homogenous charge compression ignition (HCCI) engines feature high thermal efficiency and ultralow emissions compared to gasoline engines. However, unlike SI engines, HCCI combustion does not have a direct way to trigger the in-cylinder combustion. Therefore, gasoline HCCI combustion is facing challenges in the control of ignition and, combustion, and operational range extension. In this paper, an active fuel design concept was proposed to explore a potential pathway to optimize the HCCI engine combustion and broaden its operational range. The active fuel design concept was realized by real time control of dual-fuel (gasoline and n-heptane) port injection, with exhaust gas recirculation (EGR) rate and intake temperature adjusted. It was found that the cylinder-to-cylinder variation in HCCI combustion could be effectively reduced by the optimization in fuel injection proportion, and that the rapid transition process from SI to HCCI could be realized. The active fuel design technology could significantly increase the adaptability of HCCI combustion to increased EGR rate and reduced intake temperature. Active fuel design was shown to broaden the operational HCCI load to 9.3 bar indicated mean effective pressure (IMEP). HCCI operation was used by up to 70% of the SI mode load while reducing fuel consumption and nitrogen oxides emissions. Therefore, the active fuel design technology could manage the right fuel for clean engine combustion, and provide a potential pathway for engine fuel diversification and future engine concept.

关键词: active fuel design     HCCI     gasoline     n-heptane     engine     combustion    

汽油压燃发动机低负荷燃烧稳定性和冷机着火性能的试验研究 Article

周磊, 华剑雄, 卫海桥, 韩义勇

《工程(英文)》 2019年 第5卷 第3期   页码 558-567 doi: 10.1016/j.eng.2018.12.010

摘要:

汽油压燃(GCI)是一种极具发展前景的低排放、高效率燃烧技术。然而,低负荷燃烧稳定性和冷启动是GCI燃烧面临的两大挑战。为了解决这些问题,研究人员提出了负气门重叠角(NVO)、喷油策略优化、燃油重整和进气预热等策略,然而,冷启动难题却仍然有待解决。本文的目标正是研究实现GCI发动机冷启动的切实可行的方法。本研究结合了NVO、缸内燃油重整和进气预热,以实现在冷机和冷边界条件下GCI发动机的着火和随后的热机工况。结果表明,喷油开始时刻(SOI)在进气冲程时具有最佳的燃油经济性;SOI在压缩冲程期间可有效拓展发动机小负荷极限;SOI在NVO期间则可实现发动机在冷进气和冷却液未预热条件下的稳定燃烧。考虑到NVO喷油策略具有未燃混合气活性强、缸内热积累速度快的特点,该策略非常适合用于实现GCI的冷机着火。在冷启动过程中,实现GCI发动机的着火还需要一些辅助措施,如进气加热,以启动第一个着火循环。通过NVO策略、缸内燃油重整和进气预热的组合,本文实现了GCI发动机在5个燃烧循环内的成功着火。启动过程结束后,发动机无需再采用进气预热即可实现稳定运行。

关键词: 汽油压燃     冷起动     热机工况     喷油策略     燃烧稳定性    

Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites

《能源前沿(英文)》   页码 763-774 doi: 10.1007/s11708-023-0897-1

摘要: Plastic waste is causing serious environmental problems. Developing efficient, cheap and stable catalytic routes to convert plastic waste into valuable products is of great importance for sustainable development, but remains to be a challenging task. Zeolites are cheap and stable, but they are usually not efficient for plastic conversion at a low temperature. Herein a series of microporous and mesoporous zeolites were used to study the influence of porosity and acidity of zeolite on catalytic activity for plastics conversion. It was observed that H-Beta zeolite was an efficient catalyst for cracking high-density polyethylene to gasoline at 240 °C, and the products were almost C4–C12 alkanes. The effect of porosity and acidity on catalytic performance of zeolites was evaluated, which clearly visualized the good performance of H-Beta due to high surface area, large channel system, large amount accessible acidic sites. This study provides very useful information for designing zeolites for efficient conversion of plastics.

关键词: plastics conversion     polyethylene     zeolites     acidity     porosity    

Online gasoline blending with EPA Complex Model for predicting emissions

Stefan JANAQI, Mériam CHÈBRE, Guillaume PITOLLAT

《工程管理前沿(英文)》 2018年 第5卷 第2期   页码 214-226 doi: 10.15302/J-FEM-2017022

摘要: The empirical Complex Model developed by the US Environmental Protection Agency (EPA) is used by refiners to predict the toxic emissions of reformulated gasoline with respect to gasoline properties. The difficulty in implementing this model in the blending process stems from the implicit definition of Complex Model through a series of disjunctions assembled by the EPA in the form of spreadsheets. A major breakthrough in the refinery-based Complex Model implementation occurred in 2008 and 2010 through the use of generalized disjunctive and mixed-integer nonlinear programming (MINLP). Nevertheless, the execution time of these MINLP models remains prohibitively long to control emissions with our online gasoline blender. The first objective of this study is to present a new model that decreases the execution time of our online controller. The second objective is to consider toxic thresholds as hard constraints to be verified and search for blends that verify them. Our approach introduces a new way to write the Complex Model without any binary or integer variables. Sigmoid functions are used herein to approximate step functions until the measurement precision for each blend property is reached. By knowing this level of precision, we are able to propose an extremely good and differentiable approximation of the Complex Model. Next, a differentiable objective function is introduced to penalize emission values higher than the threshold emissions. Our optimization module has been implemented and tested with real data. The execution time never exceeded 1 s, which allows the online regulation of emissions the same way as other traditional properties of blended gasoline.

关键词: emissions     reformulated gasoline     online control     global optimization    

Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids

Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 107-112 doi: 10.1007/s11705-010-0539-0

摘要: Br?nsted acidic ionic liquids (ILs), -methylimidazole hydrogen sulfate ([HMIm]HSO ) and -methylpyrrolidone hydrogen sulfate ([HNMP]HSO ), are synthesized and employed as extractants to extract thiophene from model gasoline (thiophene dissolved in -octane). The effect of extraction temperature, extraction time and volume ratio of ILs to model gasoline on desulfurization rates is investigated. Then, the optimal desulfurization conditions are obtained: the ratio of ILs to model gasoline is 1∶1, extraction temperature is 50°C for [HMIm]HSO and 60°C for [HNMP]HSO , extraction time is 60 min. Meanwhile, the desulfurization rate of [HNMP]HSO for model gasoline is 62.8%, which is higher than that of [HMIm]HSO (55.5%) under optimal conditions. The reason is discussed on the basis of the interaction energy between thiophene and ILs at the B3LYP/6-311++ G(d,p) level. Furthermore, the total desulfurization rate of [HNMP]HSO and [HMIm]HSO reaches 96.4% and 94.4%, respectively, by multistage extraction. Finally, the used ILs can be reused by vacuum drying, and their desulfurization rates are not significantly decreased after recycling 7 times in single-stage desulfurization.

关键词: br?nsted ionic liquids     model gasoline     thiophene     extraction     density functional theory    

of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline

Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 564-574 doi: 10.1007/s11705-017-1654-y

摘要: In the transformation of methanol to gasoline (MTG), the selectivity to gasoline and the aromatic content in the produced gasoline are important factors. The catalytic activities of steam-treated and non-steam-treated nano-scale H-ZSM-5 (NHZ5) catalysts impregnated with Ag(I), Zn(II) or P(V) have been investigated in a continuous flow fixed bed reactor. The NH -TPD results showed that after impregnation, the Ag/NHZ5, Zn/NHZ5 and P/NHZ5 catalysts contained comparatively more strong, medium-strong and weak acid sites, respectively. Treatment with steam decreased the number of acid sites in all the catalysts, but the pore volumes in the catalysts were larger which improved carbon deposition resistance resulting in prolonged lifetimes. After 6 h of MTG reaction, the selectivity to gasoline for the steam-treated catalysts, , and were 70.5, 68.4 and 68.7 wt-%, respectively, whereas their respective aromatic contents in the produced gasoline were 61.9, 55.4 and 39.0 wt-%. Thus is the most promising catalyst for MTG applications which can meet the China IV gasoline standard that the amount of aromatics in gasoline should be less than 48 wt-%.

关键词: MTG     nano-scale H-ZSM-5     steam treatment     gasoline     selectivity to gasoline    

标题 作者 时间 类型 操作

Impact of gasoline engine deposits on light duty vehicle emissions: in-use case study in Beijing, China

Xin YUE, Ye WU, Xianjiang HUANG, Yao MA, Yuan PANG, Xiaofeng BAO, Jiming HAO

期刊论文

汽油机燃用轻油基燃料的缸内过程参数分析

孙玲玲

期刊论文

Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start

SONG Ruizhi, LIU Shenghua, LIANG Xiaoqiang, Tiegang H U

期刊论文

Experimental study of stratified lean burn characteristics on a dual injection gasoline engine

Chun XIA, Tingyu ZHAO, Junhua FANG, Lei ZHU, Zhen HUANG

期刊论文

Control of homogeneous charge compression ignition combustion in a two-cylinder gasoline direct injectionengine with negative valve overlap

WANG Zhi, WANG Jianxin, SHUAI Shijin, MA Qingjun, TIAN Guohong

期刊论文

一种高效的二冲程发动机概念——结合空气混合动力系统的增压 直流扫气式直喷汽油(BUSDIG)发动机

王新颜, 赵华

期刊论文

“高效两冲程发动机概念的更正:具有空气混合动力功能的增压单流扫气直喷汽油(BUSDIG)发动机” [工程5(2019)535–547]

Xinyan Wang, Hua Zhao

期刊论文

Selective catalytic reduction of NOx from exhaust of lean-burn engine over Ag-Al2O3/cordierite catalyst

LI Junhua, KANG Shoufang, FU Lixin, HAO Jiming

期刊论文

燃料/发动机系统的发展——实现可持续运输的途径

Gautam Kalghatgi

期刊论文

Active fuel design—A way to manage the right fuel for HCCI engines

Zhen HUANG,Zhongzhao LI,Jianyong ZHANG,Xingcai LU,Junhua FANG,Dong HAN

期刊论文

汽油压燃发动机低负荷燃烧稳定性和冷机着火性能的试验研究

周磊, 华剑雄, 卫海桥, 韩义勇

期刊论文

Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites

期刊论文

Online gasoline blending with EPA Complex Model for predicting emissions

Stefan JANAQI, Mériam CHÈBRE, Guillaume PITOLLAT

期刊论文

Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids

Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN

期刊论文

of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline

Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han

期刊论文